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ABSTRACT

Rapid-onset droughts, known as flash droughts, can have devastating impacts on agriculture, water

resources, and ecosystems. The ability to predict flash droughts in advance would greatly enhance our

preparation for them and potentially mitigate their impacts. Here, we investigate the prediction skill of the

extreme 2012 flash drought over theU.S. Great Plains at subseasonal lead times (3 weeks or more in advance)

in global forecast systems participating in the Subseasonal Experiment (SubX). An additional comprehensive

set of subseasonal hindcasts with NASA’s GEOS model, a SubX model with relatively high prediction skill,

was performed to investigate the separate contributions of atmospheric and land initial conditions to flash

drought prediction skill. The results show that the prediction skill of the SubXmodels is quite variable. While

skillful predictions are restricted to within the first two forecast weeks in most models, skill is considerably

better (3–4 weeks or more) for certain models and initialization dates. The enhanced prediction skill is found

to originate from two robust sources: 1) accurate soil moisture initialization once dry soil conditions are

established, and 2) the satisfactory representation of quasi-stationary cross-Pacific Rossby wave trains that

lead to the rapid intensification of flash droughts. Evidence is provided that the importance of soil moisture

initialization applies more generally to central U.S. summer flash droughts. Our results corroborate earlier

findings that accurate soil moisture initialization is important for skillful subseasonal forecasts and highlight

the need for additional research on the sources and predictability of drought-inducing quasi-stationary

atmospheric circulation anomalies.

1. Introduction

Droughts that develop on time scales of several weeks

to a few months, known as flash droughts, have been

receiving increased attention by the scientific commu-

nity (e.g., Svoboda et al. 2002; Otkin et al. 2018;

Pendergrass et al. 2020). Characterized by a lack of

precipitation, enhanced evapotranspiration, and a rapid

decline in soil moisture, flash droughts can disrupt ag-

ricultural production, deplete water resources, and im-

pair natural ecosystems and vegetation (Smith and Katz

2013; Otkin et al. 2016; Choat et al. 2018; He et al. 2018,

2019; Vogel et al. 2019). The central United States, ex-

tending from the southern Plains to the Midwest, has

been identified as a region that is particularly prone to

flash drought (Christian et al. 2019; Koster et al. 2019;

Chen et al. 2019). While precipitation deficits are a

major factor contributing to flash drought onset in this

region, abnormally high temperatures and evaporative

demand are often associated with drought intensifica-

tion as well (Otkin et al. 2013; Livneh and Hoerling

2016; Koster et al. 2019; Chen et al. 2019). This is partly

because the central United States is a region where dry

soils can strongly alter the land surface energy budget

and enhance surface temperatures (Koster et al. 2009a).

One of the best recent examples of a flash drought

affecting the central United States occurred in the

summer of 2012. During this season, the region trans-

formed from near-average to extremely dry conditions

within a 3-month period fromMay through July. As seen

in Fig. 1, the event was fueled, to first order, by persis-

tent monthly precipitation deficits and extremely warm

temperatures, both ofwhich led to a rapid drying of the soil.
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The drought had significant and widespread impacts

on agriculture, vegetation, and the U.S. economy

(Hoerling et al. 2014; Rippey 2015; Otkin et al. 2016),

with agricultural losses amounting to more than $30

billion (NCDC 2019).

The causes of the 2012 flash drought have been ex-

tensively studied yet remain an active area of research.

While there is substantial evidence for a connection

between North American drought and sea surface

temperatures (SSTs) on seasonal and longer time scales

(e.g., Schubert et al. 2016), SSTs appear not to have

played a role in causing the 2012 drought (Hoerling et al.

2013; Wang et al. 2014). Instead, the drought appears to

have been induced by a series of atmospheric circulation

anomalies that originated from internal atmospheric

variability (Wang et al. 2014). Figure 2 shows the tem-

poral evolution of the event, highlighting two key pe-

riods in which the atmospheric circulation inducedwarm

and dry conditions: the first in mid-May and the second

and more prominent event in late June through early

July (Figs. 2a,b). The second period, in particular, was

associated with an upper-level atmospheric ridge that

remained nearly stationary over the United States for 2–

3 weeks (Fig. 2h). This quasi-stationary atmospheric

ridge induced an extreme heatwave and precipitation

deficits, which were associated with an unusually dry

atmosphere and led to a rapid additional drying of the

soil (Figs. 2a–d). The atmospheric ridge was part of a

quasi-stationaryRossbywave train (Hoskins andAmbrizzi

1993; Ambrizzi et al. 1995), that is, a series of atmospheric

troughs and ridges that remained nearly stationary in

geographic location but with energy slowly propagating

fromwest to east along the zonal jet stream.Thewave train

of 2012 developed between Eurasia and the westernNorth

Pacific in early to mid-June and propagated eastward to

North America over subsequent weeks (Figs. 2g,h).

FIG. 1. Observed spatiotemporal evolution of anomaly fields during the 2012 Great Plains flash drought. (a)–(c) Anomalies of pre-

cipitation (P; mmday21) for May, June, and July 2012, respectively. (d)–(f) Anomalies of 2-m air temperature (T2m; K) for May, June,

and July 2012. (g)–(i) TheZ scores of root zone soil moisture (RZSM; unitless) on 1May, 1 Jun, and 1 Jul 2012, respectively. All anomalies

are fromMERRA-2 and are computed relative to the 1999–2015 climatology. The corrected P product from MERRA-2, as described in

section 2c, is shown in (a)–(c). The Z scores are computed as anomalies normalized by the standard deviation over 1999–2015. The box

indicates the core drought region (1058–838W, 338–508N), which is used for computing regional averages throughout the paper.
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FIG. 2. Observed temporal evolution of the 2012 Great Plains flash drought. Hovmöller diagrams depict anomalies as a function of

longitude and time from 1 May through 31 Aug for (a) P (mmday21), (b) T2m (K), (c) vapor pressure deficit at 2m (VPD2m; hPa)

(d) RZSM (Z score), (e) surface latent heat flux (LH; Wm22), (f) surface sensible heat flux (SH; Wm22), (g) meridional wind at 200 hPa

(V200; m s21), and (h) geopotential height at 200 hPa (H200; dam). All anomalies are averaged over 338–508N (see box in Fig. 1) and are

shown for the central United States in (a)–(f) and for a domain covering the western North Pacific to easternNorth Atlantic in (g) and (h).

Vertical lines in (g) and (h) indicate the central U.S. longitude domain that is shown in (a)–(f). All anomalies are fromMERRA-2 and are

computed as described in Fig. 1. A 10-day running mean has been applied for smoother plotting.
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Another important element of the 2012 flash drought

was land–atmosphere feedback (Roy et al. 2019;

Herrera-Estrada et al. 2019). This aspect of the event is

clearly demonstrated in Fig. 2. Despite extremely warm

temperatures in March and below average precipitation

in April of 2012 (not shown), soil moisture was only

marginally drier than average at the start of the warm

season in earlyMay (Fig. 2d). Initially, the warm and dry

atmospheric conditions in mid-May caused an increase

in latent heat flux (hereafter LH), consistent with a

sufficient supply of soil moisture and an energy-

controlled evaporative regime (Figs. 2b,c,e). Upon

further drying of the soil in lateMay, a transition to a soil

moisture–controlled evaporative regime occurred with a

reduction in LH and increase in sensible heat flux

(hereafter SH) (Figs. 2e,f). This surface response (i.e.,

increased SH at the expense of evapotranspiration)

intensified markedly with the arrival of the quasi-

stationary ridge and associated extreme dry and warm

atmospheric conditions in late June, and then remained

nearly constant through mid-August. The persistent

surface heat flux anomalies combined with very low at-

mospheric moisture from late June through mid-August

likely helped to intensify and/or maintain the precipi-

tation deficits and warm temperatures that led to the

surface flux anomalies in the first place. In addition to

the local land–atmosphere feedbacks just described,

recent studies further show that dry land conditions, by

reducing moisture transport to downwind areas, possibly

aided in the spatial propagation of drought conditions in

2012 (Basara et al. 2019; Herrera-Estrada et al. 2019).

Dynamical seasonal forecasts issued in the spring of

2012 failed to predict intensifying drought conditions in

the subsequent months (Hoerling et al. 2014), likely

exacerbating the negative impacts of the severe flash

drought that ensued. Here, we address the question of

whether subseasonal forecasts, that is, forecasts for ap-

proximately three weeks to one month in the future,

could have provided useful information if issued weekly

in the summer of 2012. We do this by analyzing refor-

ecasts (or hindcasts) from the Subseasonal Experiment

(SubX), a multimodel global forecast ensemble that was

recently developed to advance the research and opera-

tional capabilities of subseasonal prediction (Pegion

et al. 2019).

Unlike weather and seasonal forecasting where skill is

largely derived from a single source (atmospheric initial

conditions and SSTs, respectively), the potential for

skillful subseasonal predictions of summer flash drought

in the central United States likely stems from multiple

sources. One possible source of skill is the land, and in

particular, soil moisture. In principle, knowledge of the

initial soil moisture conditions at a given location can

lead to skillful subseasonal forecasts if the following are

true: 1) the initial soil moisture is anomalously and suf-

ficiently wet or dry, 2) the initial anomaly remains

throughout the forecast (i.e., soil moisture memory is

high), and 3) soil moisture conditions strongly influence

surface heat fluxes and therefore temperature and pre-

cipitation over that location. The central United States

is a region in which the above three criteria are oftenmet

during summer months (e.g., Koster and Suarez 2001;

Koster et al. 2004a, 2009a). In fact, it has been demon-

strated that when a global forecast model is initialized

with accurate soil moisture anomalies over the central

United States, in addition to the atmospheric and oce-

anic state, the subseasonal prediction of temperature

and (to a lesser degree) precipitation generally improves

(Koster and Suarez 2003; Koster et al. 2004b, 2010, 2011;

Dirmeyer et al. 2018; Seo et al. 2019).

Another potential source of skill for the subseasonal

prediction of flash droughts comes from quasi-stationary

atmospheric circulation anomalies that can initiate or

intensify drought conditions, such as that in late June of

2012 (Fig. 2). These circulation anomalies are often as-

sociated with quasi-stationary Rossby wave trains (e.g.,

Wang et al. 2014, 2017; Schubert et al. 2014). Boreal

summer Rossby wave trains may initiate in a particular

region (e.g., the Asian monsoon region) and travel

eastward over the course of a few weeks (Jiang and Lau

2008; Schubert et al. 2011; Moon et al. 2013; Lopez et al.

2019). Thus, their development and future state may be

inherently more predictable than random weather noise

(Teng et al. 2013). Because these waves can induce ex-

treme conditions in surface weather that last multiple

weeks (e.g., Chen and Newman 1998), their adequate

prediction in a forecast model can aid in the multiweek

prediction of not only the intensity, but also the onset, of

flash droughts. The prediction skill of Rossby wave

trains in subseasonal forecast models is a topic that has

previously received little attention among researchers

[Chang et al. (2019) is a recent exception], and is one

that demands further investigation.

In this study, we focus our analysis on the 2012 Great

Plains flash drought due to its extreme impacts and its

association with multiple flash drought mechanisms, but

we also include analysis of central U.S. drought events in

2006 and 2011 tomore robustly examine the impact of land

initialization on forecasts. Our goal is to provide an over-

view of the subseasonal prediction skill of central U.S.

summer flash droughts in SubX while highlighting the im-

portant roles of both land initialization and Rossby wave

trains for the prediction skill. To further aid in the investi-

gation of the 2012 drought, additional hindcasts fromoneof

the SubX models, the Global Modeling and Assimilation

Office (GMAO)–GEOS model, are generated.
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Section 2 provides details about the SubX models,

including the GMAO-GEOS and the additional hind-

casts that are generated with this model. The datasets

used for forecast verification and the analysis method-

ology used throughout the paper are also detailed in

section 2. The results documenting the prediction skill of

the entire SubX ensemble are presented in section 3,

while results from the additional experiments with

GMAO-GEOS are provided in section 4. Finally, a

summary and discussion are given in section 5.

2. Data and methodology

a. SubX output

The SubX models analyzed in this paper are listed in

Table 1. Throughout the remainder of this paper and in

all figures, we refer to individual models by only their

forecast system name for simplicity (these names are

given in the first column of Table 1, following the hy-

phen). The models provide hindcasts over a recent 17-yr

period (1999–2015) at an initialization frequency of at

least once per week (see Table 1 for details). The

number of ensemblemembers andmethod of initializing

the members vary between models (see Table 1 and

Pegion et al. 2019). Hindcasts range in length from 32 to

45 days depending on the model, allowing for an as-

sessment of subseasonal (week 3–4) prediction skill. All

models except Global Environmental Multiscale Model

(GEM) and GEFS are coupled ocean–atmosphere sys-

tems and all modeling groups initialize the atmosphere

and land for their hindcasts following their own proce-

dures (Pegion et al. 2019). Additional details about the

GEOS model are given in section 2b. For additional

information about the other SubX models, including

documentation for the models, see Pegion et al. (2019).

We use eight models that provide hindcast output to

the International Research Institute (IRI) Data Library

of Columbia University. Due to a technical error that

affected land initialization during 2011 and 2012 in the

GEFS model (Y. Zhu 2019, personal communication),

we omit GEFS results from 2011 and 2012 from our

analysis unless otherwise noted. GEFS output from

other years is included in our analysis. For GEFS cal-

culations that involve all years of the hindcast period

(e.g., climatologies and overall prediction skill, de-

scribed in section 2d), we remove the years 2011 and

2012 from the calculations unless noted otherwise.

Daily output of the following variables was obtained

for all models: precipitation (hereafter P), 2-m air tem-

perature (hereafter T2m), meridional wind at 200 hPa

TABLE 1. List of SubX models analyzed in this paper along with information about their hindcast ensemble size and initialization

frequency. Models marked with an asterisk (*) provide soil moisture output. Note that the 46LCESM1 is not an official SubX participant

(i.e., it does not provide real-time forecasts) but provides hindcast output on the IRI Data Library that archives SubX data. Additional

details about the SubX models and references for individual models are provided in Pegion et al. (2019).

Model Institution(s)

No. of

members

Forecast

length Hindcast initializations

CESM-46LCESM1 National Center for Atmospheric

Research and National Oceanic and

Atmospheric Administration, Earth

System Research Laboratory

10 45 days Every Wednesday 1999–2015

ECCC-GEM Environment and Climate Change

Canada

4 32 days Every 7 days 1995–2014

EMC-GEFS* National Centers for Environmental

Prediction, Environmental Modeling

Center

11 35 days Every Wednesday 1999–2016

ESRL-FIM* National Oceanic and Atmospheric

Administration, Earth System

Research Laboratory

4 32 days Every Wednesday 1999–2017

GMAO-GEOS* National Aeronautics and Space

Administration, Global Modeling and

Assimilation Office

4 45 days Every 5 days 1999–2016

NCEP-CFSv2 National Centers for Environmental

Prediction

1 44 days Every 6 h 1999–2017

NAVY-ESPC Naval Research Laboratory 1 45 days 4 consecutive days each week

1999–2016

RSMAS-CCSM4* National Center for Atmospheric

Research, run at the University of

Miami Rosenstiel School of Marine

and Atmospheric Science

3 45 days Every 7 days 1999–2016
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(hereafter V200), and geopotential height at 200 hPa

(hereafter H200). Four of the eight models also provide

daily soil moisture output. Vertically integrated soil

moisture (hereafterVISM) is provided for Flow-Following

Icosahedral Model (FIM), GEOS, and CCSM4. For

GEFS, volumetric soil moisture content is provided for

four model layers. We analyze VISM directly from

models that provide it, and for GEFS we compute VISM

by scaling each layer’s volumetric soil moisture content

by the layer depth and summing over all layers. Daily

averages over the period 0000–0000 UTC are provided

for P, T2m, and VISM for all models except GEOS, for

which the daily average is calculated over 2100 UTC of

the previous day to 2100 UTC of the current day due to

the initialization time of the model (see section 2b). For

V200 and H200, daily fields are provided as the mean of

instantaneous values at 0000, 0600, 1200, and 1800 UTC

for all models. All SubX model output is available on a

18 latitude 3 18 longitude grid.

b. Additional hindcasts for GEOS

For a subset of initialization dates in 2012, additional

hindcasts were performed with the GEOS model. The

version of the model used for SubX and for the addi-

tional hindcasts performed here is the Subseasonal to

Seasonal (S2S), version 2, prediction system (Molod et al.

2020). The model is a fully coupled land–atmosphere–

ocean system and is run at an atmospheric resolution of

0.58 latitude 3 0.58 longitude with 72 hybrid sigma/

pressure levels from the surface to 0.01hPa. (Note that

the output was regridded to a 18 3 18 resolution for SubX;

we analyze the regridded 18 output in section 3 for a fairer
comparison with other SubX models, and we analyze

the original 0.58 output in section 4 for a more direct

comparison with the verification data.) The GEOS atmo-

spheric model is similar to that used for the Modern-Era

RetrospectiveAnalysis for ResearchApplications, version

2 (MERRA-2) (Molod et al. 2015, 2020). The land surface

model (LSM) in GEOS is the catchment-based LSM that

is also used for MERRA-2 and is documented in Koster

et al. (2000). The ocean component is the Modular Ocean

Model, version 5 (MOM5), that was developed at the

Geophysical Fluid Dynamics Laboratory (Griffies et al.

2005; Griffies 2012), and the sea ice component is the

CICE 4.1 model developed by the Los Alamos National

Laboratory (Hunke and Lipscomb 2010). Formore details

about the model components and parameterizations, see

Molod et al. (2020).

The GEOS hindcasts prepared for SubX are initial-

ized with MERRA-2 reanalysis data for the land and

atmosphere. The ocean is initialized with output from a

series of 5-day-long coupled ocean data assimilation

runs (Molod et al. 2020). GEOS hindcasts are initialized

at 2100 UTC every 5 days, corresponding to the fre-

quency of available oceanic initial conditions. Four en-

semble members were produced for SubX, but here we

extend the ensemble size to 35 members for a subset of

the 2012 hindcasts in order to more robustly examine

prediction skill. The additional ensemble members were

produced by perturbing the atmospheric moisture, poten-

tial temperature, and horizontal wind component fields

following the sameapproachused in generating the original

SubX ensemble members (Molod et al. 2020). Hereafter,

these 35-member GEOS hindcasts are referred to as con-

trol (CTL) hindcasts. (Note that in section 3, only the

original fourGEOSensemblemembers prepared for SubX

are used for a fairer comparison with other models).

To assess the impact of land surface initial conditions

(including soil moisture) on hindcast prediction skill

during 2012, we perform a parallel set of GEOS 35-

member hindcasts in which we remove the influence of

anomalies in land surface fields at initialization (hereafter

referred to as noSFC hindcasts). This is accomplished by

performing 35 simulations where the atmosphere and

ocean are initialized from a particular calendar day dur-

ing 2012 (e.g., 21 May 2012), but land surface fields over

the entire globe are initialized from different years on

that calendar day (e.g., 21 May 1981, 21 May 1982, etc.),

thus effectively scrambling the initial land surface infor-

mation.1 The alternative years used to initialize the land

surface are from 1981 to 2016, excluding 2012. The land

surface fields that are modified encompass a variety of

quantities that depict the land surface physical state, in-

cluding various hydrologic and thermodynamic proper-

ties of the soil and surface skin temperature.

The 35-member CTL and noSFC hindcasts described

above are performed for nine initialization dates, spaced

5 days apart, between 21May and 30 June in 2012. These

dates are chosen because the forecasts (falling in June

and July 2012) coincide with the rapid intensification

and peak of the 2012 Great Plains flash drought (Fig. 2).

We also perform CTL hindcasts that are initialized

every day between 5 and 15 June 2012 to assess the

prediction skill of the quasi-stationary Rossby wave

train in June 2012 (Fig. 2g).

c. Verification data

The prediction skill of the SubX hindcasts is evaluated

usingpredominantlyMERRA-2 reanalysis data (Bosilovich

et al. 2015, 2017; Gelaro et al. 2017). Here we focus on daily

1 The atmosphere is unperturbed in the 35 noSFC runs presented

here. An additional set of noSFC runs with the atmosphere

perturbed as in the CTL runs gave qualitatively similar results

(not shown).
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meanfields ofP, T2m,V200, andH200 fromMERRA-2. In

the case of precipitationP, we use a ‘‘corrected’’ product, in

which the precipitationgeneratedby the atmosphericmodel

underlyingMERRA-2 wasmerged with gauge and satellite

precipitation observations (Reichle and Liu 2014;

Reichle et al. 2017). Additional variables related to

the surface energy and moisture budgets are also an-

alyzed from MERRA-2 to investigate the observed

evolution of the 2012 flash drought and to evaluate the

additional GEOS hindcasts performed for this study.

These include LH, SH, vapor pressure deficit at 2m

(hereafter VPD2m, derived from T2m and 2-m

dewpoint temperature), and root zone soil mois-

ture (hereafter RZSM, the fraction of saturation in

the top meter of soil). RZSM was generated using

the corrected P product described above.

To assess the sensitivity of our results to verification

dataset, we also analyze T2m data from the NOAA

ClimatePredictionCenter (CPC) (https://www.esrl.noaa.gov/

psd/data/gridded/data.cpc.globaltemp.html), which are de-

rived directly from station data. Results using the CPC data

are not explicitly shown but are discussed throughout the

paper where appropriate.

To evaluate soil moisture initialization accuracy in the

SubX ensemble, we utilize data from phase 2 of theNorth

American Land Data Assimilation System (NLDAS-2)

(Xia et al. 2012). NLDAS-2 is a collection of LSMs that

were run offline and driven with common atmospheric

forcing data to yield various surface fields over North

America over the period from 1979 to present. The at-

mospheric forcing data are derivedmostly from theNorth

American Regional Reanalysis (NARR; Mesinger et al.

2006) as well as station and radar-based precipitation

products (Xia et al. 2012). Because direct soil moisture

observations are unavailable at the continental scale,

NLDAS-2 is a reasonably independent estimate of soil

moisture for the purposes of model evaluation. Four

LSMs participated in NLDAS-2: Noah (Ek et al. 2003),

Mosaic (Koster and Suarez 1996), the Variable

Infiltration Capacity model (VIC) (Liang et al. 1994),

and the Sacramento Soil Moisture Accounting model

(SAC-SMA) (Burnash 1995). We analyze the mean

VISM output from Noah, Mosaic, and VIC, which is

available on a 18 latitude 3 18 longitude grid that

matches that of the SubX output. We exclude SAC-

SMA from our analysis due to differences in the way soil

moisture is produced for this LSM (Xia et al. 2012) and

due to differences in output format.

d. Processing of hindcast output and verification data

Throughout this paper, we analyze daily anomalies of

the fields described in sections 2a and 2c that are relative

to the daily climatology over the 17-yr period 1999–2015

(the SubX hindcast period).2 For the MERRA-2 or

NLDAS-2 verification data, anomalies are computed by

simply subtracting the climatology for each calendar day

from the corresponding daily values. For the SubXmodel

hindcasts, one must account for climate drift when com-

puting anomalies (e.g., Ma et al. 2014; Morcrette et al.

2018; Sun et al. 2018; Pegion et al. 2019). This is accom-

plished by removing model-dependent climatologies that

are a function of both the day of year and length of time

after initialization (or lead day) (see the appendix for

details).

In this paper, we focus on the prediction skill of the

ensemble mean of the hindcasts from each model. We

also evaluate the overall performance of the SubX en-

semble by computing a multimodel mean (hereafter

MMM), which is derived from the ensemble-mean

hindcasts of the individual models (see the appendix

for details).

We also compute standardized anomalies (hereafter

referred to as Z scores) of the soil moisture fields ana-

lyzed in this paper, in which anomalies are normalized

by their corresponding standard deviation over the pe-

riod 1999–2015. The Z scores for the SubX hindcast

output are computed by normalizing the ensemble-

mean anomalies by their corresponding standard devi-

ations. The Z scores for the SubX MMM or NLDAS-2

mean are computed by averaging the Z scores for each

model or LSM. In cases where the fields are smoothed

(e.g., by applying a 7-day running mean), the standard

deviations used to normalize anomalies are computed

after first smoothing the data.

We assess the overall prediction skill of SubX models

with temporal anomaly correlations, a metric commonly

used for skill assessment (e.g., Koster et al. 2011; Becker

et al. 2014; Kirtman et al. 2014; Pegion et al. 2019). Here,

the anomaly correlations are computed by pooling

2-week-mean forecast anomalies that validate in June–

August (JJA), for a given lead interval (e.g., forecast day

1–14), over the period 1999–2015 and correlating them

with MERRA-2 anomalies for matching forecast vali-

dation dates (Note that SubX anomalies are first inter-

polated to the 0.58 latitude3 0.6258 longitudeMERRA-2

grid for this computation, which is performed at every

grid cell). We compute anomaly correlations corre-

sponding to each 2-week lead interval (e.g., forecast days

1–14, 2–15, etc.) and use all 2-week forecasts for which the

center of the 2-week period (defined as the seventh day)

2Anomalies computed for the GEM model are relative to the

period 1999–2014 due to missing output for 2015, but this dis-

crepancy is found to have a negligible effect on our conclusions

(not shown).
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falls in JJA. The anomaly correlations quantify the ability

of a particular model’s forecasts to collectively capture

the observed subseasonal and interannual variability over

the analysis period.

3. Prediction skill in the SubX ensemble

a. Overall prediction skill

We begin by presenting the overall prediction skill of

SubX summer hindcasts for the full 17-yr period 1999–

2015 to provide context for the more focused analysis of

the 2012 drought that follows. Anomaly correlations for

the MMM are shown in the top panels of Fig. 3 for the

week 1–2 and week 3–4 forecasts of P and T2m over the

continental United States. Correlations for week 1–2

forecasts are quite high and are statistically significant

over the entire domain (Figs. 3a,b), owing to the influ-

ence of atmospheric initial conditions on the forecasts

(e.g., Lorenz 1982; Zhang et al. 2019). The week 3–4

correlations are considerably weaker (Figs. 3c,d), but

FIG. 3. Summer (JJA) prediction skill of SubXmodels over the period 1999–2015. Anomaly correlations between

MERRA-2 and the SubX multimodel mean (MMM) are shown for JJA week 1–2 forecasts for (a) P and (b) T2m.

(c),(d) Corresponding correlations for week 3–4 forecasts are shown. Correlations are averaged over the domain

indicated with a box in (a)–(d) and shown for all 2-week lead intervals for all models for (e) P and (f) T2m.

Regional-mean correlations in (e) and (f) are plotted at the center of the 2-week forecast period on the abscissa

(e.g., the correlation for the day 1–14 forecast is plotted at day 7). Models that initialize soil moisture with an LSM-

based product that utilizes a land model different from that in the full forecast system (which may result in reduced

forecast skill; Koster et al. 2009b), are denoted with dashed lines in (e) and (f). A statistically significant correlation

of 0.27 is indicated with a black contour on the maps and dotted black line on the graphs. Statistical significance is

determined via a two-tailed t test with a5 0.05 and degrees of freedom (y5 53) corresponding to approximately 13

forecasts per year and a decorrelation estimate of 4 weeks following Pegion et al. (2019).

6236 JOURNAL OF CL IMATE VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/05/21 05:02 PM UTC



with substantially better skill for T2m, a common finding

in subseasonal to seasonal prediction skill assessment

(Koster et al. 2011; van den Hurk et al. 2012; Becker

et al. 2014; Pegion et al. 2019). The skill of week 3–4 T2m

forecasts is somewhat sensitive to verification dataset;

while anomaly correlations exceed 0.5 over a substantial

part of the central and southern United States when

using MERRA-2 (Fig. 3d), they are lower (;0.3–0.5)

when based on CPC (not shown). With both MERRA-2

and CPC, however, the correlations for T2m are statis-

tically significant and can be physically justified. In

particular, as mentioned in section 1, the central United

States is a region in which soil moisture exerts a strong

influence on evaporation and surface temperature and

where subseasonal prediction benefits from accurate

land surface initialization (e.g., Koster et al. 2011). Thus,

it is likely that the significant correlations for T2m over

this region reflect accurate land surface initialization in

many SubXmodels [see section 3b(1) for amore in-depth

analysis]. The reasons for the relatively high prediction

skill for week 3–4P forecasts in the westernUnited States

are less clear and require further investigation.

The regional-mean of the anomaly correlations over

the central United States is shown for all 2-week lead

intervals and all SubX models in the bottom panels of

Fig. 3. The MMM outperforms any individual model for

both P and T2m (Figs. 3e,f), consistent with the findings

in Pegion et al. (2019) based on all seasons. The rela-

tively good performance of CFSv2 compared to other

models, especially forP (Fig. 3e), is likely due, in part, to

the large effective ensemble size of this model (see

appendix), which helps to improve the signal-to-noise

ratio of the ensemble mean forecasts (Pegion et al.

2019). [Note that the CFSv2 prediction skill is degraded

if only one initialization date per week, rather than the

average of 7 days, is analyzed (not shown)]. For T2m,

there is a substantial spread in anomaly correlations

among models (Fig. 3f). (The spread is somewhat smaller

when using CPC T2m data, which is mainly the result of

weaker correlations among the more skillful models,

not shown). Some of this model spreadmay be attributed

to different approaches for initializing soil moisture

[section 3b(1)].

b. Prediction skill of the 2012 flash drought

Ideally, the prediction skill assessment of flash

droughts should focus on physical quantities that di-

rectly characterize drought conditions, including soil

moisture and evaporative demand. Such an assessment,

however, is hindered by the limited SubX output. Here,

we instead focus on the key drivers of the 2012 Great

Plains flash drought, that is, the extreme temperature

and precipitation anomalies shown in Fig. 2. As seen in

Fig. 2, these P and T2m anomalies are coincident with

responses in atmospheric moisture, soil moisture, and

surface heat fluxes. An evaluation ofP and T2m alone in

SubX should thus provide a sufficient first-order indi-

cation of how well the 2012 flash drought is predicted.

To present a visual of how well the SubX models

collectively forecast the anomalies in P and T2m,

regional-mean and 2-week-mean forecast anomalies are

shown for each model and every available initialization

date in Fig. 4, and these are compared with corre-

sponding anomalies from MERRA-2. Most 1–2 week

forecasts from the SubX models are able to capture the

observed periods of anomalously warm and dry condi-

tions that occurred in the summer of 2012 (Figs. 4a,b,

note how the dark colors, indicating stronger anomalies,

align vertically on each of these panels). This high pre-

diction skill is not surprising considering the first 1–2

weeks falls within the realm of numerical weather pre-

diction, for which prediction skill is largely derived from

initial atmospheric conditions.

Prediction skill for the week 3–4 forecasts (Figs. 4c,d),

however, is much less consistent across models and is

generally less satisfactory. The prediction skill for P is

also notably inferior to that of T2m. Some models,

however, exhibit satisfactory prediction skill. For ex-

ample, most GEOS hindcasts initialized between mid-

May and early July predict warm and dry anomalies 3–4

weeks later. These forecasts broadly agree with what

occurred in nature despite a slight mismatch in the dates

of the most intense anomalies. The GEOS prediction

skill is investigated in greater depth in section 4. The

CFSv2 also predicts positive T2m anomalies from early

June through mid-July (Fig. 4d), in broad agreement

with MERRA-2, but the amplitude of the anomalies is

small due to the averaging over a large number of forecasts

(see the appendix).

1) IMPORTANCE OF SOIL MOISTURE

INITIALIZATION

It is important to understand the factors contributing

to enhanced prediction skill in some SubX models dur-

ing the 2012 flash drought and potentially other similar

events. To the extent that land–atmosphere feedbacks

contribute to the extreme temperatures and precipita-

tion deficits during flash droughts, one should expect

higher prediction skill frommodels that more accurately

initialize the land and simulate land–atmosphere cou-

pling. In this subsection, we examine the influence of soil

moisture initialization, in particular, on the prediction

skill. To do this, we compare soil moisture (specifically

VISM) from the SubX models that provide output with

NLDAS-2 verification data. For this evaluation, it is

important to compareZ scores of VISM, as soil moisture
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fields produced by different LSMs (i.e., those from the

SubX models or NLDAS-2 product) are highly model-

dependent and difficult to compare without prior nor-

malization (Koster et al. 2009b).

Figure 5 provides an example of the dependence of

week 3–4 forecast skill on the accuracy of soil moisture

initialization for hindcasts initialized around the middle

of June 2012. The three models analyzed (CCSM4, FIM,

and GEOS) initialize their hindcasts with roughly the

correct spatial pattern of VISM anomalies, but all

models underestimate the magnitude of negative VISM

anomalies over the central United States to varying

degrees, with the underestimation in GEOS being

smallest (Fig. 5, first column). A comparison of the

VISM anomaly at initialization (Fig. 5, first column)

with subsequentP and T2m forecasts approximately 3–4

weeks later (Fig. 5, third and fourth columns), suggests

that a larger underestimation in the initial VISM deficit

leads to a less skillful forecast. To demonstrate this

quantitatively, the regional-mean difference between

the hindcast and verification data over the central

United States (the core region of soil moisture deficit) is

computed for each model and quantity in Fig. 5 and

displayed on each panel. A correspondence between the

bias in VISM anomaly at initialization and P/T2m

anomalies approximately 3–4 weeks later is clear: the

smallest bias in VISM anomaly corresponds to the

smallest biases in P and T2m anomalies (GEOS;

FIG. 4. Prediction skill of the 2012 Great Plains flash drought in SubX models. Regional-mean anomalies of

(a),(c) P (mmday21) and (b),(d) T2m (K) are shown for MERRA-2 and SubX hindcasts for the period 1 May

through 31 Aug 2012. Anomalies are averaged over 1058–838W, 338–508N (see box in Fig. 1). For MERRA-2, the

14-day running mean anomaly is shown. For SubXmodels, the 14-day-average anomaly corresponding to the week

1–2 forecast in (a) and (b) or week 3–4 forecast in (c) and (d) is plotted as a color-filled box for each available

initialization, with its position on the abscissa corresponding to the center date of the 14-day forecast. For reference,

the initialization dates for certain GEOS forecasts are printed with italicized text on each panel. These initiali-

zations (21 May–30 Jun) are the focus of the 35-member hindcasts performed with the GEOS model that are

presented in section 4.
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Figs. 5m–p), and vice versa (CCSM4; Figs. 5e–h). While

factors such as the atmospheric circulation may con-

tribute to model differences in the P and T2m forecast

skill, Fig. 5 suggests differences in the initial VISM

anomaly also play an important role. This is supported

by the persistence of soil moisture anomalies throughout

the forecasts (cf. the first and second columns of Fig. 5).

To examine the robustness of the results in Fig. 5, we

compute regional-mean biases for other initializations

during the summer of 2012 and during two other sum-

mers in which flash droughts occurred. These two ad-

ditional summers are 2006 and 2011, when anomalously

dry soils were coincident with a lack of precipitation and

unusually warm temperatures over the upper Great

Plains or southern Great Plains, respectively (Figs. 6c–f).

The calculations are summarized in scatterplots in the

top panels of Fig. 6, comparing the biases in initialization

day VISM anomalies with corresponding biases in week

3–4 forecast anomalies of P and T2m. For this larger

sample of cases, there is again a clear relationship be-

tween soil moisture initialization accuracy and week 3–4

forecast skill: for summers in which a particular model

accurately initializes soil moisture, biases in week 3–4

forecasts ofP and T2m are, on average, smaller (Figs. 6a,b).

The rather large variability in model biases for a particular

summer and model (the whiskers about each symbol in

Fig. 6), particularly for P, likely reflects differences in the

predicted atmospheric circulation resulting from different

initial conditions and internal atmospheric variability.

Our results clearly demonstrate the importance of

accurate land initialization for the subseasonal predic-

tion of central U.S. flash droughts. They are also con-

sistent with earlier findings that accurate soil moisture

initialization is beneficial for subseasonal forecasts in

FIG. 5. Dependence of SubX prediction skill on soil moisture initialization for a mid-June initialization in 2012. Shown in the first row

are (a)Z score of vertically integrated soil moisture (VISM) on 17 Jun 2012 from the NLDAS-2mean, (b) NLDAS-2-meanVISMZ score

for 1–14 Jul, (c) MERRA-2 P anomaly for 1–14 Jul, and (d) MERRA-2 T2m anomaly for 1–14 Jul. In the three subsequent rows,

ensemble-mean forecasts for a single initialization on or just before 17 Jun are shown for SubXmodels that provide soil moisture output:

(e)–(h) CCSM4 initialized 17 Jun, (i)–(l) FIM initialized 13 Jun, and (m)–(p)GEOS initialized 15 Jun. The fields shown in each column for

the SubXmodels correspond to those shown for the verification data in the first row: from left to right, day 1VISM forecast, 1–14 Jul VISM

forecast (approximately 3–4 weeks after initialization), 1–14Jul P forecast, and 1–14 Jul T2m forecast. On each panel showing model

output, the bias (model minus verification data) is shown for the regional average over 1058–838W and 338–458N (region indicated with a

box on all panels) of the corresponding field. In the first column, the bias is computed as the difference between the NLDAS-2Z score on

17 Jun and the day 1 forecast Z score from the initialization displayed for that model.
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general, particularly when initial soil moisture condi-

tions are more extreme (e.g., Koster et al. 2010). The

implication is that the precipitation and temperature

anomalies in June–July 2012 (Fig. 2) were partly induced

by the dry land state that developed in the late spring of

2012. To predict the component of these anomalies

originating from the prior soil state and land–

atmosphere coupling, it is critical that forecasts are

initialized with accurate soil moisture anomalies.

What factors contribute to more accurate soil mois-

ture initialization and subsequent prediction skill in

some models? To address this question, we investigate

the soil moisture initialization approaches of all SubX

models. For initialization, all modeling centers utilize soil

moisture data that are ultimately derived from an LSM

driven with observed meteorology (Saha et al. 2010, 2014;

Bleck et al. 2015; Sun et al. 2018; Y. Zhu 2019, personal

communication; H. Lin 2019, personal communication; Y.

Richter 2019, personal communication; B. Kirtman 2019,

personal communication; N. Barton 2019, personal com-

munication). Ideally, the LSM used to derive the initiali-

zation data should be the same as theLSMused in the fully

coupled model that generates the forecasts (Koster et al.

2009b). Two models that do not meet this criterion are

FIG. 6. (top) Relationship between soil moisture initialization accuracy and subseasonal forecast skill in SubX models for three Great

Plains drought events. Shown on the abscissa is the regional-mean bias in the day 1 forecast Z score of VISM. On the ordinate is the

regional-mean bias in the week 3–4 forecast anomaly of (a) P or (b) T2m. Biases are relative to the NLDAS-2mean for VISM orMERRA-2

for P and T2m. Each symbol represents the mean of forecast biases for several summer initializations within a particular year and for a

particular model (see legend), while whiskers depict the corresponding range of forecast biases for that summer and model. Considered

initializations are from 1 Jun to 15 Jul for both 2006 and 2012, and from 1 Jun to 31 Jul for 2011. Biases are averaged over 1008–858W and

338–498N for 2006, 1048–938W and 308–408N for 2011, and 1058–838W and 338–458N for 2012. The region used for 2012 is the same as that

shown in Fig. 5. Also shown on each panel is the correlation (r) between mean biases of VISM and T2m/P forecasts. (bottom) For

reference, the regional-mean anomalies of (c) VISM, (d) P, and (e) T2m are shown for the verification data for the three summers

analyzed.
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CCSM4 and ESPC, both utilizing inconsistent LSMs in the

initialization data and forecast system (B. Kirtman and

N.Barton 2019, personal communication).CCSM4attempts

to correct for the inconsistency by scaling initial soilmoisture

anomalies to have the sameZ score in themodel climate and

observed climate, but this scaling is subject to the possibly

inaccurate assumption of a Gaussian soil moisture distribu-

tion (Koster et al. 2009b). Both CCSM4 and ESPC produce

noticeably less skillful forecasts during the 2012 drought

(Figs. 4–6) and over the entire 1999–2015 period (Figs. 3e,f).

In addition to soil moisture initialization, other as-

pects of land–atmosphere dynamics may influence the

prediction skill of flash droughts and contribute to some

of the scatter in Fig. 6. These include soil moisture

memory (e.g., Lorenz et al. 2010), the strength of the

land–atmosphere coupling in models, and the degree of

climate drift over the course of a forecast. These factors

are not assessed in this study, partly due to a lack of

necessary SubX output for the investigation. These

factors should be investigated in future work to better

understand the sources of flash drought prediction skill and

identify potential shortcomings in current-generation fore-

cast systems, possibly through controlledGCMexperiments.

2) PREDICTION OF ROSSBY WAVE TRAIN

In this subsection, we briefly evaluate the prediction

skill of the quasi-stationary Rossby wave train during

the 2012 flash drought in the SubX ensemble. Due to

different initialization dates and both limited and vari-

able ensemble sizes among SubX models, a robust and

fair intermodel comparison of wave train prediction skill

is challenging. Nevertheless, an assessment of the model

output shows that somemodels exhibit skill in predicting

features of the wave train. For example, GEFS,3 FIM,

and GEOS are able to sufficiently predict the develop-

ment of the wave train and its propagation to the central

North Pacific when hindcasts are initialized between 10

and 13 June (Figs. 7a–d). The downstream propagation

of the wave train to North America, however, is slower

than observed in both GEFS and FIM, with a ridge

developing over western North America rather than

central North America in late June in those models

(Figs. 7f,g). The eastward propagation of the wave and

North America ridge development are more accurate in

GEOS (Fig. 7h). In section 4b, we examine the predic-

tion skill of the 2012 Rossby wave train in GEOS more

extensively with additional ensemble members.

4. Factors contributing to skillful predictions
in GEOS

The additional ensemble members and experiments

generated with the GEOS model (described in

section 2b) serve several purposes. The first is to assess

the dependence of the GEOS prediction skill on en-

semble size. Specifically, we assess whether the GEOS

SubX forecasts during the 2012 drought (e.g., Figs. 4–7),

which are based on four ensemble members, are similar

in a larger ensemble. The larger ensemble size better

samples the noise originating from internal and inher-

ently unpredictable atmospheric variability. That is, an

ensemble-mean forecast from a large ensemble is less

likely to reflect coincidental (and chaotic) large anom-

alies from a few realizations and more likely to reflect

robust sources of prediction skill. The fundamental

question addressed here is, does the skill seen in the

four-member GEOS ensemble (Figs. 4–7) occur by

chance, or does it originate from robust sources?

Assuming GEOS’s forecasts are skillful in a larger en-

semble, we then further examine the effect of soil

moisture initialization with a controlled experiment in

which the influence of the observed 2012 land initial

conditions is removed. By comparing the hindcasts that

are initialized with and without land information, one

can also infer the sources of prediction skill originating

solely from atmospheric initial conditions.

Figure 8 presents an overview of the results from the

35-member GEOS hindcasts initialized between 21May

and 30 June 2012. All CTL hindcasts (which are ini-

tialized with both atmospheric and land conditions)

predict positive temperature anomalies of at least 1–2K

over the central United States throughout their 45-day

forecast period. Additionally, most hindcasts predict

negative precipitation anomalies with magnitude 0.5–1

mmday21 or greater over the same period and region.

These predictions are in broad agreement with the

anomalies in MERRA-2, but exhibit smaller temporal

fluctuations, are slightly weaker in magnitude, and have

peak anomalies at somewhat different times than oc-

curred in nature (similar to the four-member GEOS

SubX results in Fig. 4). Thus, the GEOS forecasts of

the atmospheric state during the summer of 2012 are

robust, with a 35-member ensemble showing overall

skillful predictions of the warm and dry conditions that

transpired.

a. Land initialization

What effect does land initialization have on the skill of

the GEOS hindcasts? To answer this, we compare the

GEOS CTL hindcasts with parallel runs in which the

land initial conditions are taken from alternative years

3 Based on our assessment, the V200 and H200 fields do not

appear to be adversely impacted by the land initialization error

mentioned in section 2a. To compute the climatologies for V200

and H200, the years 2011 and 2012 are included in the calculation.
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(i.e., the noSFC hindcasts described in section 2b, also

shown in Fig. 8). In the noSFC hindcasts, predicted

anomalies of P and T2m generally reduce to near zero

approximately two weeks after the hindcasts are ini-

tialized. Anomalies of appreciable magnitude that occur

in the first two weeks are the consequence of atmo-

spheric initial conditions, which are unperturbed in the

noSFC runs. Beyond two weeks, the atmospheric states

contributing to P and T2m anomalies become so di-

vergent across the ensemble (a consequence of error

growth imposed by the shuffled land initial conditions)

that their average is no different from climatology. The

results thus show that with some exceptions (highlighted

later), atmospheric initial conditions alone were insuf-

ficient to predict anomalies of P and T2m during the

summer of 2012 on a subseasonal time scale.

To further stress the above findings, Figs. 9 and 10

display the predicted spatial patterns of P and T2m,

respectively, for the peak drought period of 20 June–9

July 2012. When initialized on 26 May, for example, the

FIG. 7. The quasi-stationary Rossby wave train of June 2012 in observations and example SubX hindcasts. Hovmöller diagrams show

anomalies in (top) V200 and (bottom)H200 averaged over 338–508N for a domain covering the westernNorth Pacific to the western North

Atlantic for (a),(e) MERRA-2, (b),(f) GEFS initialized 13 Jun, (c),(g) FIM initialized 13 Jun, and (d),(h) GEOS initialized 10 Jun. The

MERRA-2 positive and negative 6m s21 V200 anomaly contours are plotted in (b)–(d) as solid red and dashed blue lines, respectively.

Similarly,MERRA-2 positive and negative 6-damH200 anomaly contours are plotted in (f)–(h). A 10-day runningmean has been applied

in all panels for smoother plotting. The black rectangle indicates the central United States (1108–808W) from 22 Jun through 3 Jul (the

approximate timing of the development and intensification of a ridge over North America).
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CTL experiment predicts negative P and positive T2m

anomalies in the U.S. Great Plains and Midwest that

broadly agree with MERRA-2 (Figs. 9a,b and 10a,b).

However, the magnitude of the predicted anomalies,

especially for P, is weaker than observed. Without land

initial conditions (noSFC experiment), these P and T2m

anomalies are essentially absent (Figs. 9c and 10c).

Furthermore, the epicenter of the predicted T2m anom-

alies for 20 June–9 July, when initialized 26 May (CTL

experiment), closely corresponds to the epicenter of

anomalously dry soil moisture conditions in the summer

of 2012 (cf. Figs. 1h and 10b). These findings provide

strong evidence that the extreme anomalies associated

with the peak of the 2012 flash drought were contributed,

in part, by preceding large soil moisture deficits over the

central United States.

b. Rossby wave train

Although atmospheric initial conditions alone do not

generally contribute to prediction skill beyond two

weeks, one noteworthy exception is with the 10 June

initialization from the GEOS model. Figures 9 and 10

also show the spatial pattern of the 20 June–9 July

forecasts of P and T2m when GEOS is initialized

10 June. Compared to the 26 May initialization, the

predicted T2m anomaly from the CTL hindcast initial-

ized 10 June is larger in both magnitude and spatial

extent, agreeing better with MERRA-2 (Figs. 10a,d).

Interestingly, when surface initial conditions are shuf-

fled for the 10 June initialization (noSFC hindcast), a

potent T2m anomaly remains across the northern

United States and southern Canada (Fig. 10e). Similarly,

the predicted P anomaly for 20 June–9 July is only

marginally reduced in magnitude in the noSFC hindcast

compared to the CTL hindcast (Figs. 9d,e). It appears,

therefore, that both land and atmospheric initial con-

ditions on 10 June contribute separately to the pre-

dicted anomalies of P and T2m that occur roughly 2–4

weeks later.

A closer inspection of the V200 and H200 fields from

the 35-member CTL hindcast initialized 10 June reveals

that the quasi-stationary wave train in mid–late June is

adequately predicted (Figs. 11–12), in agreement with

the four-member results shown in Fig. 7. In particular,

the development of waves between Eurasia and the

western North Pacific in mid-June, eastward propaga-

tion of the waves, and associated development of a ridge

over central North America in late June are all reason-

ably captured (Figs. 11a,b and 12a,b). The results are

very similar in the noSFC hindcast (not shown), con-

firming that atmospheric initial conditions alone are

sufficient to generate the wave train. Remarkably, the

intraensemble spread during the first two weeks of the

forecast, the key period of wave train development, is

FIG. 8. Prediction skill of GEOS 35-member hindcasts for the 2012 flash drought. The 7-day running mean

anomaly (averaged over the central United States, 1058–838W, 338–508N) of (a) P (mmday21) and (b) T2m (K) is

shown for MERRA-2 and the ensemble mean of each GEOS hindcast initialized between 21May and 30 Jun 2012.

Results are shown for the control (CTL) and scrambled surface (noSFC) experiments (see section 2b for experi-

ment details). Vertical lines are drawn at the initialization date and each week after initialization for each of the

GEOS hindcasts.
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quite small (Figs. 11c and 12c), demonstrating the ro-

bustness of the wave train development in GEOS. We

further find that the wave train development is ade-

quately predicted when GEOS is initialized on or after

9 June (not shown). Additional research is currently

underway to better understand the physical basis of

the robust wave train prediction in GEOS. In short, the

upper-level ridge over North America induced by the

predicted wave train substantially enhances the warm-

ing that would occur from dry initial soil conditions

alone (Figs. 10b,d). The GEOS’s prediction of the wave

train thus leads to a more skillful forecast of the peak of

the 2012 drought, particularly with regard to the mag-

nitude of T2m anomalies. The consequence of this is a

rather skillful multiweek forecast for conditions that

would favor drought intensification and subsequent land–

atmosphere feedbacks, including reduced atmospheric

moisture, increased SH, and reduced LH (Fig. 13).

Two important conclusions can be drawn here: 1)

quasi-stationaryRossbywaves are a potentially valuable

source of flash drought prediction skill; without the ad-

equate prediction of such waves, the onset and/or true

intensity of a flash drought may not be properly pre-

dicted, and 2) the development and propagation of

Rossby wave trains, and their associated drought-

inducing quasi-stationary circulation anomalies, can be

sufficiently predicted in a subseasonal forecast model as

far as 2–3 weeks in advance.While previous studies have

also emphasized the importance of Rossby waves for

flash drought prediction skill (e.g., Teng et al. 2013;

Wang et al. 2017), our study is the first to demonstrate

this importance with a state-of-the-art subseasonal

forecast model.

c. Wave train–enhanced soil moisture deficits

Once quasi-stationary atmospheric circulation

anomalies are established over the central United

States, they can induce local extreme precipitation def-

icits and heat waves that dry the soil. The dry soil helps

to further sustain the drought through land–atmosphere

FIG. 9. Prediction skill of precipitation during the 2012 flash drought in selected GEOS 35-member hindcasts.

(a)MERRA-2 P anomaly (mmday21) for 20 Jun–9 Jul 2012. GEOS ensemble-mean forecasts of the P anomaly for

20 Jun–9 Jul when initialized 26May for the (b) CTL and (c) noSFC experiments. GEOS ensemble-mean forecasts

of the P anomaly for 20 Jun–9 Jul when initialized 10 Jun for the (d) CTL and (e) noSFC experiments.
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feedbacks, and these feedbacks can extend subseasonal

prediction skill.

An example of the above is provided with the 25 June

initialization. The day of 25 June coincides with a strong

positive H200 anomaly over North America associated

with the arrival of the quasi-stationary wave train

(Figs. 2h and 14a,b). When GEOS is initialized with

realistic land and atmospheric states on this date, the

strong initial ridge induces warm and dry atmospheric

conditions that act to maintain the initial soil moisture

deficit throughout the 45-day forecast (Figs. 14c–e, red

curves). The parallel noSFC hindcast indicates that the

extreme initial atmospheric conditions, alone, contrib-

ute to substantial drying of the soil within the first two

weeks, mostly due to a dearth of precipitation during

that time (Figs. 14c,d, blue curves). The noSFC hindcast

subsequently predicts negative P and positive T2m

anomalies beyond week 2 that are roughly half the

magnitude of those in the CTL hindcast (Figs. 14d,e).

Since no upper-level circulation anomalies are present

after week 2 of the noSFC hindcast (not shown), the P

and T2m anomalies then are likely the response to the

dry soil. The results imply that soil moisture anomalies

induced by quasi-stationary circulations can be sub-

stantial and can later induce P and T2m anomalies be-

yond the weather prediction time frame, potentially

enhancing/extending subseasonal forecast skill. This

highlights the importance of accurate atmospheric initial

conditions, a global forecast system that is skillful for

1–2-week forecasts, and a realistic representation of land–

atmosphere dynamics for subseasonal prediction.

5. Summary and discussion

In this paper, we examine the subseasonal prediction

skill of the 2012 Great Plains flash drought in the SubX

ensemble. Overall, the prediction skill is highly variable

among models. With further analysis of the SubX en-

semble and additional controlled hindcasts with the

GEOS model, we are able to deduce robust sources of

prediction skill emanating separately from land and at-

mospheric initial conditions. Although the models do

not adequately predict the onset or rapid worsening of

dry soils in 2012, the more skillful hindcasts exhibit

FIG. 10. As in Fig. 9, but for the T2m anomaly (K) for 20 Jun–9 Jul 2012.
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useful predictive guidance with regard to continuing or

worsening drought conditions throughout the summer.

The first source of prediction skill stems from the ac-

curate representation of the soil physical state at the

start of a forecast. Our results strongly demonstrate,

based on two separate findings, that accurate soil mois-

ture initialization improves subseasonal forecasts of the

2012 flash drought and other similar events: 1) biases in

predicted P and T2m anomalies during central U.S.

droughts are smaller when initial soil moisture anoma-

lies are more accurate in the SubX ensemble (Figs. 5 and

6), and 2) the adequate prediction of precipitation and

temperature anomalies associated with land–atmosphere

coupling during the 2012 drought relies on the accurate

initialization of both the land and atmosphere in the

GEOS model (Figs. 8–10).

This has promising implications. The dry soil moisture

conditions in the late spring of 2012 predisposed the

atmosphere to be warm and dry in subsequent weeks to

months due to land–atmosphere feedbacks. In the ab-

sence of strong circulation anomalies that could coun-

teract this, accurately initialized forecast models could

have predicted that warm and dry conditions would

prevail in the summer of 2012. Note, however, that

negative P and positive T2m anomalies in 2012 are only

forecasted at subseasonal time scales once initial soil

FIG. 11. Prediction of the June 2012 quasi-stationary wave train in the GEOS hindcast initialized 10 Jun. (a) Temporal evolution of the

V200 anomaly (m s21) inMERRA-2 from 10 Jun through 2 Jul 2012. Each row corresponds to the 7-day average printed along the left side

of the figure. (b) Corresponding temporal evolution of the V200 anomaly in the GEOS 35-member ensemble mean initialized 10 Jun for

the CTL experiment. (c) Meridional mean of the observed and predicted V200 anomalies shown in (a) and (b) over 308–508N. In (c), the

ensemble-mean of the GEOS hindcast is indicated with a thick red line and individual members with thin pink lines. Vertical dashed lines

in (c) indicate the central United States (1108–808W).
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conditions become sufficiently dry (Figs. 2, 4c,d, and 8).

Without an antecedent soil moisture anomaly, sub-

seasonal predictions depend largely on atmospheric

initial conditions, which in many cases do not provide

prediction skill beyond the first two forecast weeks. This

explains why the precipitation deficits and warm tem-

peratures in early May 2012, which led to dry soil con-

ditions in the first place (Figs. 2a–c), are not well

predicted on 3–4-week lead times in the SubX ensemble

(Figs. 4c,d).

In addition to soil moisture, cross-Pacific stationary

Rossby wave trains, and their associated drought-

inducing circulation anomalies, are shown here to be a

key source of subseasonal prediction skill for extreme

events such as the 2012 flash drought. In particular, our

simulations with the GEOS model show that the ade-

quate prediction of the 2012 wave train and subsequent

North America ridge leads to a more realistic forecast.

However, a limitation of this study is that we do not fully

understand why the GEOS model predicts the wave

train better than other models or why certain initiali-

zation dates (e.g., 10 June) produce better forecasts.

Addressing these unresolved questions requires a better

understanding of quasi-stationary wave trains, their

physical sources, and the characteristics of forecast

models that enable their adequate prediction. Studies

have shown that subseasonal convective variability in

the East Asian monsoon region can trigger drought-

inducing wave trains such as that in 2012 (Jiang and Lau

2008; Zhu and Li 2016; Lopez et al. 2019). Furthermore,

it has been demonstrated that a realistic representation

of the climatological summer jet stream in the North

Pacific is necessary for the successful simulation of

wave train propagation (Wang et al. 2017). Additional

FIG. 12. As in Fig. 11, but for the temporal evolution of the H200 anomaly (dam) from 10 Jun through 2 Jul 2012.
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research on these topics should provide a better overall

understanding of forecast system performance and help

identify areas of the forecast systems to improve in order

to improve subseasonal prediction of extreme events.

The key findings of this study, which are largely based

on the 2012 Great Plains flash drought, presumably ap-

ply to central U.S. summer flash droughts in general.

One reason is that strong land–atmosphere interaction is

intrinsic to the central United States during summer

(e.g., Koster et al. 2004a, 2009a); our results based on

flash drought events in three different years support this

(Fig. 6). Another reason is that stationary Rossby waves,

which are known to induce short-term warm-season

droughts in the United States, are often a manifestation

FIG. 13. Rapid intensification of the 2012 Great Plains drought in MERRA2 and the GEOS SubX hindcast initialized 10 Jun. Shown in

the top panels are Hovmöller diagrams of anomalies in (a) P (mmday21), (b) T2m (K), (c) VPD2m (hPa) (d) RZSM (%), (e) LH

(Wm22), and (f) SH (Wm22) fromMERRA-2 for 13 Jun through 21 Jul. Corresponding anomalies from theGEOS hindcast initialized 10

Jun are shown in the bottom panels. (g)–(l) The average of the first four GEOS ensemble members (i.e., the original SubX members) is

shown in order to match the ensemble size available from operational SubX forecasts. All anomalies are averaged over 338–508N (see box

in Fig. 1). A 7-day running mean has been applied for smoother plotting.
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of recurring modes of the subseasonal atmospheric cir-

culation (e.g., Schubert et al. 2011; Wang et al. 2017).

In summary, our results highlight key sources of sub-

seasonal prediction skill of flash droughts in the central

United States and identify areas where further model

development and research are needed. One area where

model development may improve subseasonal predic-

tion is land initialization. As shown here, subseasonal

forecasts are more skillful in models that use the same

LSM for their soil moisture initialization and to generate

forecasts. Not all models follow this approach; if they did,

subseasonal prediction of central U.S. flash droughts would

likely improve in a multimodel ensemble. In addition to

land initialization, the simulation of land–atmosphere cou-

pling in models can have an important influence on pre-

diction skill. A limitation of our study is the use of a single

reanalysis dataset (MERRA-2) for forecast verification,

which makes a robust assessment of land–atmosphere dy-

namics challenging. Future research on the surface energy

budget, planetary boundary layer dynamics, and evapora-

tive demand in models, using a variety of verification data-

sets, could prove useful for better understanding model

biases as they relate to flash drought prediction.

Finally, to accurately predict drought intensification

on subseasonal time scales, precipitation must be

accurately predicted (Livneh and Hoerling 2016; Koster

et al. 2019). Our results show that the subseasonal pre-

diction skill of precipitation is limited, even in cases for

which soil moisture is accurately initialized and the 2012

wave train is sufficiently predicted (e.g., Figs. 4, 9–10,

13). This undoubtedly hinders the ability of any SubX

model to adequately predict soil moisture declines as-

sociated with flash drought onset or intensification (e.g.,

Fig. 13). Improvement in precipitation prediction is

therefore crucial for meaningful flash drought fore-

warning. Additional research on the impacts of model

biases (e.g., Klein et al. 2006; Zhang et al. 2018; Chang

et al. 2019), atmospheric resolution (e.g., Zheng et al.

2019), and convective parameterizations (e.g., Wang

and Hsu 2019; Xie et al. 2019), for example, on the

prediction skill of precipitation is accordingly warranted.
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APPENDIX

Computation of SubX Hindcast Anomalies
and MMM

For the SubX hindcasts, daily anomalies are com-

puted for a given initialization date by first averaging all

hindcasts initialized on that calendar day over the 17

years of available output, generating a lead-dependent

climatology, then removing that climatology from each

of the individual hindcasts. This calculation is straight-

forward for the models that initialize hindcasts on

unique calendar dates each year (GEM, GEOS, CFSv2,

and CCSM4). However, several models (46LCESM1,

GEFS, FIM, and ESPC) initialize hindcasts on a ‘‘same

day of week’’ schedule, such that different calendar

dates are initialized each year (Table 1). For these

models, we define a unique set of 52 initialization dates

from which to compute lead-dependent climatologies.

The unique set of dates begins with 4 January, ends with

27 December, and has an increment of 7 days and ex-

cludes the leap day (29 February). For each unique date,

the hindcasts initialized closest to that date every year

are averaged over the 1999–2015 period to compute an

approximate lead-dependent climatology correspond-

ing to that unique initialization date. The computed

climatologies are then subtracted from the hindcasts

making up each climatology to generate anomalies.

Prior to computing climatologies and anomalies for

the CFSv2 and ESPC models, additional steps are

employed due to the atypical initialization frequencies

of these models (see Table 1). CFSv2 was initialized four

times every day at 0000, 0600, 1200, and 1800 UTC. To

reduce the number of CFSv2 initializations to be more

consistent with the other SubX models, we first average

CFSv2 hindcasts over consecutive 7-day periods

beginning with the 1 January initialization, aligning

forecast verification dates for the hindcasts that are

averaged. A single average is computed for each 7-day

period and for each unique hour of the day that CFSv2

hindcasts were initialized. Each unique initialization hour

is then regarded as a separate ensemble member for

CFSv2. In a similar fashion, the ESPC hindcast output is

averaged over the four consecutive dates that were ini-

tialized, resulting in a single mean hindcast each week.

Due to differences in the dates and frequencies of the

model initializations, the computation of the MMM is

not trivial. Here, we compute theMMM for a unique set

of predefined initialization dates. These unique dates

are the same as described above for the computation of

climatologies (i.e., 4 January, 11 January, . . . , 27December).

For each unique date, the ensemble-mean hindcasts from

each model that are initialized closest to that date are aver-

aged, while aligning forecast verification dates. Inmost cases,

only one hindcast from eachmodel contributes to theMMM

for a given unique initialization date. In cases where two

hindcasts contribute, the hindcasts from both nearby initiali-

zations are first averaged for the given model.
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